Best Approximation to Functions with Restricted Derivatives

JOHN A. ROULIER

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607 Communicated by E. W. Cheney Received January 9, 1975

1. INTRODUCTION

Let $0 \le k_1 < \cdots < k_p$ be fixed integers and let ℓ_i and μ_i , $i = 1, \dots, p$, be fixed extended real valued functions on [-1, +1] which satisfy the following conditions:

- (i) ℓ_i may take the value $-\infty$ but never $+\infty$;
- (ii) μ_i may take the value $+\infty$ but never $-\infty$;
- (iii) $X_i^- = \{x \in [-1, +1]; l_i(x) = -\infty\}$ and $X_i^+ = \{x \in [-1, +1]; \mu_i(x) = +\infty\}$ are open subsets of [-1, +1]; (1)
- (iv) ℓ_i is continuous on the complement of X_i^- and μ_i is continuous on the complement of X_i^+ ;
- (v) $\ell_i(x) < \mu_i(x)$ for all $x \in [-1, +1]$.

These conditions ensure that there is $\epsilon > 0$ for which $\mu_i(x) - \ell_i(x) \ge \epsilon$ for all x in [-1, +1]. Let f have k_p continuous derivatives on [-1, +1] and assume that for i = 1, ..., p and x in [-1, +1] we have

$$\ell_i(x) < f^{(k_i)}(x) < \mu_i(x).$$
(2)

It is easy to see that there is $\delta > 0$ so that for all x in [-1, +1] and i = 1, ..., p we have

$$\min(\mu_i(x) - f^{(k_i)}(x), \qquad f^{(k_i)}(x) - \ell_i(x)) \ge \delta.$$
(3)

For each nonnegative integer n let H_n denote the algebraic polynomials of degree n or less, and let $\|\cdot\|$ denote the uniform norm on [-1, +1].

Let f be continuous on [-1, +1]. For each integer n = 0, 1, 2,... define $E_n(f) = \inf_{p_n \in H_n} ||f - p_n||$. If $p \in H_n$ and $||f - p|| = E_n(f)$ then p is called the *polynomial of best approximation to f from* H_n . It is well known that for each n p exists and is unique.

In this paper we will give new sufficient conditions on f to ensure that if $p_n \in H_n$ is the polynomial of best approximation to f then for n sufficiently large

$$\ell_i(x) < p_n^{(k_i)}(x) < \mu_i(x).$$
(4)

Roulier [3] studies this problem when we have either

$$\mu_i \equiv +\infty$$
 and $\ell_i \equiv 0$

or

$$\mu_i\equiv 0 \qquad ext{ and } \quad \ell_i\equiv +\infty.$$

Kimchi and Leviatan [1] also study this problem. In particular they show that (4) will hold if f has $2k_p$ continuous derivatives, if

$$\sum 1/n \,\,\omega(f^{(2k_p)}, \,1/n^{1/2}) < +\,\infty,\tag{5}$$

and if f satisfies (2). ω is the modulus of continuity of $f^{(2k_p)}$.

The main theorem of this paper shows that (5) may be omitted entirely.

Malozemov [2] proved the following theorem.

THEOREM 1.1. Let f have r continuous derivatives on [-1, +1]. Let $\delta_n(x) = (1/n)((1/n) + (1 - x^2)^{1/2})$. Then for each integer $n \ge r$ there is a polynomial $q_n \in H_n$ such that for each k = 0, 1, ..., r and each x in [-1, +1]

$$|f^{(k)}(x) - q_n^{(k)}(x)| \leq C_r \delta_n(x)^{r-k} \,\omega(f^{(r)}, \,\delta_n(x)).$$

 C_r is a constant depending only on r.

2. The Main Theorems

THEOREM 2.1. Let f have r continuous derivatives on [-1, +1] and let k be a positive integer which satisfies $2k \leq r$. For each n let $p_n \in H_n$ be the polynomial of best approximation to f on [-1, +1]. Then

$$\lim_{n \to \infty} \|f^{(k)} - p_n^{(k)}\| = 0.$$

Proof. Let $\{q_n\}_{n=0}^{\infty}$ be a sequence of polynomials as in Theorem 1.1. Then

$$\|f^{(s)} - q_n^{(s)}\| \leqslant (C/n^{r-s}) \,\omega(f^{(r)}, 1/n) \tag{6}$$

for s = 0, 1, ..., r. For each n = 0, 1, ... let r_n be the *n*th degree polynomial of

best approximation to $f - q_n$. Then $q_n + r_n$ is the *n*th degree polynomial of best approximation to f. Write $p_n = q_n + r_n$. Note that

$$E_n(f) \leqslant (K/n^r) \, \omega(f^{(r)}, 1/n). \tag{7}$$

Note also that

$$\|r_n\| \leq \|f - p_n\| + \|f - q_n\| \leq (C_1/n^r) \omega(f^{(r)}, 1/n).$$

Thus, by the Markov inequality we have

$$\|r_n^{(s)}\| \leqslant (C_1/n^{r-2s}) \omega(f^{(r)}, 1/n).$$

Clearly if $2s \leq r$ we have

$$\lim_{n\to\infty} \|r_n^{(s)}\| = 0.$$

Hence, if $2s \leq r$ we have using this and (6) that

$$\|f^{(s)} - p_n^{(s)}\| \leq \|f^{(s)} - q_n^{(s)}\| + \|r_n^{(s)}\|$$
$$\leq (C/n^{r-s}) \omega(f^{(r)}, 1/n) + \|r_n^{(s)}\|$$

Hence $\lim_{n\to\infty} ||f^{(s)} - p_n^{(s)}|| = 0$ if $2s \leq r$. This is the desired result.

THEOREM 2.2. Let $k_1 < k_2 < \cdots < k_p$ be fixed nonnegative integers as above and let ℓ_i and $\mu_i i = 1, 2, \dots, p$ be extended real-valued functions as above. Let $f^{(2k_p)}$ be continuous on [-1, +1]. Assume that for all x in [-1, +1] we have for $i = 1, \dots, p$

$$\ell_i(x) < f^{(k_i)}(x) < \mu_i(x).$$
(8)

For n = 0, 1, 2,... let $p_n \in H_n$ be the polynomial of best approximation to f on [-1, +1]. Then for n sufficiently large we have

$$\ell_i(x) < p_n^{(k_i)}(x) < \mu_i(x) \qquad \text{for } -1 \leq x \leq 1.$$

Proof. This is a simple consequence of Theorem 2.1.

The following is a simple corollary to Theorem 2.2 concerning monotone approximation.

COROLLARY. Let f have two continuous derivatives on [-1, +1] and assume $f'(x) \ge \delta > 0$ on [-1, +1]. Then for n sufficiently large the p in H_n of best approximation to f is increasing on [-1, +1].

346

3. CONCLUSIONS

These theorems improve on the results in [1, 3]. It is not known yet whether it is necessary for f to have $2k_p$ continuous derivatives for Theorem 2.2 to remain valid. In particular, is the above corollary true if we only assume f' is continuous?

References

- 1. E. KIMCHI AND D. LEVIATAN, On restricted best approximation to functions with restricted derivatives, J. Approximation Theory, to appear.
- 2. V. N. MALOZEMOV, Joint approximation of a function and its derivatives by algebraic polynomials, *Soviet Math. Dokl.* 7 (1966), 1274–1276.
- 3. J. A. ROULIER, Polynomials of best approximation which are monotone, J. Approximation Theory 9 (1973), 212-217.