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1. INTRODUCTION

Let 0 ~ k1 < ... < k p be fixed integers and let ci and (-ti, i = I, ...,p, be
fixed extended real valued functions on [-I, +I] which satisfy the following
conditions:

(i) ci may take the value - 00 but never + 00;

(ii) (-ti may take the value + 00 but never - 00;

(iii) X;- = {x E[-1, +1]; Ii(x) = - oo} and Xi+ = {x E[-1, +1];
pix) = + oo} are open subsets of [-1, +1]; (1)

(iv) ci is continuous on the complement of X,- and (-ti is continuous
on the complement of X i+;

(v) ti(x) < (-tix) for allxE [-1, +1].

These conditions ensure that there is € > 0 for which (-ti(X) - ci(x) ~ €

for all x in [-1, +1]. Letfhave k p continuous derivatives on [-1, +1] and
assume that for i = 1,...,p and x in [-1, +1] we have

(2)

It is easy to see that there is [) > 0 so that for all x in [-1, +1] and i = 1, ...,p
we have

(3)

For each nonnegative integer n let H n denote the algebraic polynomials of
degree n or less, and let II . II denote the uniform norm on [-1, +1].

Letfbe continuous on [-1, +1]. For each integer n = 0, 1,2,... define
En(f) = infp EH Ilf - Pn II· If p E Hn and Ilf - p II = En(f) then p is called
the polynomi:ll ofbest approximation to ffrom H n • It is well known that for
each n p exists and is unique.
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In this paper we will give new sufficient conditions on f to ensure that if
Pn E H n is the polynomial of best approximation to fthen for n sufficiently
large

(4)

Roulier [3] studies this problem when we have either

or

fti = +00 and

and

Kimchi and Leviatan [1] also study this problem. In particular they show
that (4) will hold iff has 2kp continuous derivatives, if

(5)

and iff satisfies (2). w is the modulus of continuity of P27Cp ).

The main theorem of this paper shows that (5) may be omitted entirely.
Malozemov [2] proved the following theorem.

THEOREM 1.1. Let f have r continuous derivatives on [-1, + 1]. Let
on(x) = (1jn)«1jn) + (1 - X2)1/2). Then for each integer n :;:::: r there is a
polynomial qn E H n such that for each k = 0, 1, ... , r and each x in [-1, +1]

C(' is a constant depending only on r.

2. THE MAIN THEOREMS

THEOREM 2.1. Let f have r continuous derivatives on [-1, +1] and let k be
a positive integer which satisfies 2k < r. For each n let Pn E H n be the poly­
nomial ofbest approximation tofon [-1, +1]. Then

lim II j<k) - pUc) II = 0.
n...-7 00 n

Proof Let {qn}:~o be a sequence of polynomials as in Theorem 1.1. Then

(6)

for s = 0, 1,... , r. For each n = 0, 1, ... let r n be the nth degree polynomial of
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best approximation to f - qn . Then qn + I'n is the nth degree polynomial of
best approximation to f Write Pn = qn + I'n . Note that

(7)
Note also that

II rn II ::s;; Ilf - Pn II + Ilf - qn II
::s;; (C1lnr) w(j<r), lin).

Thus, by the Markov inequality we have

Clearly if 2s ~ I' we have

lim II r(s) II = o.
no 00 n

Hence, if 2s ::s;; r we have using this and (6) that

II ps) - p~s) II ::s;; II ps) - q~S) II + II r~S) II

::s;; (CjnT-S) w(pr), lin) + II r~S) II .

Hence limn_>oo II !(s) - p~S) II = °if 2s ::s;; r. This is the desired result. I

THEOREM 2.2. Let k 1 < k 2 < ... < k p be fixed nonnegative integers as
above and let Ii and P-i i = 1,2,... , P be extended real-valuedfunctions as above.
Let !(2kp ) be continuous on [-I, +I]. Assume that for all x in [-I, +I] we
have for i = I, ... ,p

(8)

For n = 0, 1,2,... let Pn E Hn be the polynomial ofbest approximation to f on
[-I, +I]. Then for n sufficiently large we have

for -I ::s;; x ::s;; 1.

Proof This is a simple consequence of Theorem 2.1. I
The following is a simple corollary to Theorem 2.2 concerning monotone

approximation.

COROLLARY. Letf have two continuous derivatives on [-I, +I] and assume
rex) ~ 0 > °on [-1, +1]. Then for n sufficiently large the pin H n of best
approximation to f is increasing on [-1, +1].
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3. CONCLUSIONS
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These theorems improve on the results in [1,3]. It is not known yet
whether it is necessary for f to have 2kp continuous derivatives for
Theorem 2.2 to remain valid. In particular, is the above corollary true if we
only assume l' is continuous?
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